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A study of one-turn quantum 
refereed games



Let us start with QMA….

Alice (the yes prover)

Referee

Sends quantum proof  ρ



QRG(1) is a generalization

Alice (the yes prover)

Bob (the no prover)

Referee

Sends quantum state ρ

Sends quantum state σ



Proper definitions

That of QRG(1)….

That of a “referee”…. to the circuit Rx is of the form r ⌦ s, where r 2 D(A) is sent by Alice, and r 2 D(B)
is sent by Bob. The state r is stored in register A and s is stored in register B. When
the measurement of the output qubit of Rx in the standard basis yields outcome 1, we
interpret it as “Alice wins.” Similarly, if it yields outcome 0, we interpret it as “Bob wins.”

Now, let us consider the quantity w(Rx) defined below.

w(Rx) = max
r2D(A)

min
s2D(B)

h1|Rx(r ⌦ s)|1i. (4.2)

Observe that D(A) and D(B) are compact and convex sets, and the value h1|Rx(r ⌦ s)|1i
is bilinear in r and s. Applying Sion’s min-max theorem, we can argue that changing
the order of the minimum and maximum does not change the value of the expression. In
other words, this quantity may alternatively be written

w(Rx) = min
s2D(B)

max
r2D(A)

h1|Rx(r ⌦ s)|1i. (4.3)

Note that this value represents the probability that Alice ”wins the game” when the ref-
eree’s circuit is described by Rx, for a particular x 2 S⇤, assuming both Alice and Bob
play optimally. With this quantity defined, let us now turn our attention to the definition
of QRG(1).

Definition 9. A promise problem A = (Ayes, Ano) is contained in the complexity class
QRG(1)a,b if there exists a referee R = {Rx : x 2 S⇤} such that the following properties
are satisfied:

1. For every string x 2 Ayes, it is the case that w(Rx) � a.

2. For every string x 2 Ano, it is the case that w(Rx)  b.

We also define QRG(1) = QRG(1)2/3,1/3.

In Definition 9, a and b may be constants, or they may be functions of the length of the
input x. A few known facts about QRG(1) are summarized below.

• QMA ✓ QRG(1). The QRG(1) referee may discard Bob’s state and only consider
Alice’s state r as a quantum proof. Thus, any QMA referee has an analogous QRG(1)
referee.

• QRG(1) is closed under complementation: QRG(1) = co-QRG(1). For a promise
problem A = (Ayes, Ano) 2 QRG(1), we can just exchange the roles of Alice and
Bob to obtain a new one-turn quantum refereed game for A.

• It is true that, like the error bounds for BPP, BQP, and QMA, QRG(1) = QRG(1)a,b
for a lot of a and b. In particular, QRG(1) = QRG(1)a,b if a and b are polynomial-time
computable functions and satisfy the following relations:

a  1 � 2�p, b � 2�p, and a � b � 1
p

(4.4)

for some choice of a strictly positive polynomially bounded function p.
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Define…



What do we know about QRG(1)?
Trivial facts:


1. Contains QMA  (just neglect the no proof).


2.  Contains co-QMA (just neglect the yes proof).


3.  Error reduction by parallel repetition.


Non-trivial facts:


1. Contained in PSPACE (proved by Rahul Jain and John Watrous, 2009).


2. (folklore result, elucidated in thesis).



Contributions of this thesis

Two new classes:

CQRG(1) MQRG(1)



Hasse diagram showing the inclusions



What are those funny classes?



First tool….
A Chernoff-type bound, but for matrices! Proved by Tropp, 2011.



Second tool…..

Idea of the proof: similar to Marriott Watrous but without in-place error amplification

Brief description: gives us a PP language!



More tools…..
A complexity class called QMA.C



Fact:  is contained in , when  is P or PP ℚ𝕄𝔸 ⋅ ℂ ℙ ⋅ ℂ ℂ

Idea of proof: Gap.C functions! 



First result

Existence of a polynomial length string. 
Use the matrix bound of Tool 1 + probabilistic method. 

Existence of a PP language. 
Use Tool 2.



Setting things up…

Define: 

Let Alice send an optimal classical probability 
distribution “p” over


.y ∈ Σn

Observation: Alice is restricted to a classical strategy!

Probability that Alice wins when Bob plays optimally: 

Hurdle: “p” may not have a polynomial length 
description



Brief proof idea
Take , where  is the number of Bob’s qubits. 

Consider an -tuple of strings  for .
N = 72(m + 2) m

N ⟨y1, y2, …, yN⟩ yi ∈ Σn

Define a distribution “q” as follows: 

By the matrix tail bound, there exists a “q” that is a good approximation to “p”!

“q” has a polynomial length description!

(Intuition: choose an index uniformly at random!)



Probability Alice wins when she plays “q”:

Use second tool to get the PP language B!

Combine the two (polynomial description + PP language), and we have our proof



Second result:

We will prove:

Existence of PP language B. 
Argued for same as before, using the “second” tool.

We will define this channel. 
Justification uses the matrix tail bound 

from before.



Setting things up

Define: 

Assuming Bob plays optimally, the language B can be found the same way  
as before, by applying the “second” tool.

MQRG(1)

QMA.C



Proof outline
It now suffices to prove:

Slightly more involved because there may be entanglement across N registers. 
Proved using a conditional variant of Hoeffding’s inequality.

Take: 
Can prove using the matrix tail bound, similar to before.



Conclusion

Future work:


1. Oracle separations. Is there an oracle separating PP/AWPP from QRG(1)?


2. Facts about QRG(1) where both provers are classical.


3. Is QRG(1) contained somewhere in the counting hierarchy?

Proved two containments. 



Thank you!


