A study of one-turn quantum refereed games

Soumik Ghosh, 29th June, 2020.

Let us start with QMA....

Sends quantum proof ρ

Alice (the yes prover)

Referee

Alice (the yes prover)

Bob (the no prover)

QRG(1) is a generalization

Referee

Proper definitions

That of a "referee"....

Definition 8. A referee is a polynomial-time generated family

$$R = \{R_x : x \in \Sigma^*\}$$

of quantum circuits which has the following features, for each $x \in \Sigma^*$:

- 1. The inputs to the circuit R_x can be divided into two registers: an *n*-qubit register A and an *m*-qubit register B, where *n* and *m* are polynomially bounded functions.
- 2. The output of the circuit R_x is a single qubit, which is measured in the standard basis immediately after running the circuit.

That of QRG(1)....

Definition 9. A promise problem $A = (A_{yes}, A_{no})$ is contained in the complexity class $QRG(1)_{\alpha,\beta}$ if there exists a referee $R = \{R_x : x \in \Sigma^*\}$ such that the following properties are satisfied:

- 1. For every string $x \in A_{\text{ves}}$, it is the case that $\omega(R_x) \ge \alpha$.
- 2. For every string $x \in A_{no}$, it is the case that $\omega(R_x) \leq \beta$.

We also define $QRG(1) = QRG(1)_{2/3,1/3}$.

$$\omega(R_{x}) = \max_{\rho \in \mathcal{D}(\mathcal{A})} \min_{\sigma \in \mathcal{D}(\mathcal{B})} \langle 1 | R_{x}(\rho \otimes \sigma) | 1$$

Define...

 $1\rangle$.

What do we know about QRG(1)?

Trivial facts:

- 1. Contains QMA (just neglect the no proof).
- 2. Contains co-QMA (just neglect the yes proof).
- 3. Error reduction by parallel repetition.

Non-trivial facts:

- 1. Contained in PSPACE (proved by Rahul Jain and John Watrous, 2009). 2. $QRG(1) = P^{QRG(1)}$ (folklore result, elucidated in thesis).

Contributions of this thesis

Two new classes:

MQRG(1)

Hasse diagram showing the inclusions

What are those funny classes?

Definition 12. The complexity class $\exists \cdot PP$ contains all promise problems $A = (A_{yes}, A_{no})$ for which there exists a language $B \in PP$ and a polynomially bounded function p such that these two implications hold:

$$x \in A_{\text{yes}} \Rightarrow \left\{ y \in \Sigma^p : \langle x, y \rangle \in B \right\} \neq \emptyset,$$

 $x \in A_{\text{no}} \Rightarrow \left\{ y \in \Sigma^p : \langle x, y \rangle \in B \right\} = \emptyset.$

that these two implications hold:

$$x \in A_{\text{yes}} \Rightarrow \left| \left\{ y \in \Sigma^{p} : \langle x, y \rangle \in B \right\} \right| > \frac{1}{2} \cdot 2^{p},$$
$$x \in A_{\text{no}} \Rightarrow \left| \left\{ y \in \Sigma^{p} : \langle x, y \rangle \in B \right\} \right| \le \frac{1}{2} \cdot 2^{p}.$$

$P \cdot PP$

Definition 13. The complexity class $P \cdot PP$ contains all promise problems $A = (A_{yes}, A_{no})$ for which there exists a language $B \in PP$ and a polynomially bounded function p such

First tool....

A Chernoff-type bound, but for matrices! Proved by Tropp, 2011.

having the following properties:

- 1. Each X_k takes $d \times d$ positive semidefinite operator values satisfying $X_k \leq 1$. 2. The minimum eigenvalue of the expected operator $E(X_k)$ satisfies $\lambda_{\min}(E(X_k)) \geq \eta$.

It is the case that

$$\Pr\left(\lambda_{\min}\left(\frac{X_1+\cdots+X_N}{N}\right) < \eta-\varepsilon\right) \le d\exp(-2N\varepsilon^2).$$

Corollary 20. Let d and N be positive integers, let $\eta, \varepsilon \in [0, 1]$ with $\eta > \varepsilon$ be real numbers, and let X_1, \ldots, X_N be independent and identically distributed operator-valued random variables

Second tool....

Brief description: gives us a PP language!

Lemma 22. Let $\{Q_x : x \in \Sigma^*\}$ be a polynomial-time generated family of quantum circuits, where each circuit Q_x takes as input a k-qubit register Y and an m-qubit register B, for polynomially bounded functions k and m, and outputs a single qubit. For each $x \in \Sigma^*$ and $y \in \Sigma^k$, define an operator

$$S_{x,y} = (\langle y | \otimes 1$$

ing implications are true for all $x \in \Sigma^*$ and $y_1, \ldots, y_N \in \Sigma^k$:

$$\lambda_{min} \left(\frac{S_{x,y_1} + \dots + S_{x,y_N}}{N} \right)$$
$$\lambda_{min} \left(\frac{S_{x,y_1} + \dots + S_{x,y_N}}{N} \right)$$

Idea of the proof: similar to Marriott Watrous but without in-place error amplification

 $S_{x,y} = (\langle y | \otimes \mathbb{1}_B) Q_x^*(|1\rangle \langle 1|) (|y\rangle \otimes \mathbb{1}_B).$ For every polynomially bounded function N, there exists a language $B \in PP$ for which the follow- $\left(\frac{y_N}{2}\right) \geq \frac{2}{3} \quad \Rightarrow \quad (x, y_1 \cdots y_N) \in B,$ $\lambda_{min}\left(\frac{S_{x,y_1}+\cdots+S_{x,y_N}}{N}\right) \leq \frac{1}{3} \quad \Rightarrow \quad (x,y_1\cdots y_N) \notin B.$ 31

More tools....

A complexity class called QMA.C

implications hold.

Definition 24. For a given complexity class \mathcal{C} , the complexity class QMA $\cdot \mathcal{C}$ contains all promise problems $A = (A_{yes}, A_{no})$ for which there exists a polynomial-time generated family of quantum circuits $\{P_x : x \in \Sigma^*\}$, where each P_x takes n = n(|x|) input qubits and outputs k = k(|x|) qubits, along with a language $B \in \mathcal{C}$, such that the following

1. If $x \in A_{yes}$, then there exists a density operator ρ on n qubits for which

$$\Pr(P_x(\rho) \in B) \geq \frac{2}{3}.$$

2. If $x \in A_{no}$, then for every density operator ρ on n qubits,

$$\Pr(P_x(\rho) \in B) \leq \frac{1}{3}.$$

Fact: $\mathbb{QMA} \cdot \mathbb{C}$ is contained in $\mathbb{P} \cdot \mathbb{C}$, when \mathbb{C} is P or PP

Idea of proof: Gap.C functions!

Definition 2. Let \mathcal{C} be any complexity class of languages over the alphabet Σ . A function $f : \Sigma^* \to \mathbb{Z}$ is a Gap $\cdot \mathcal{C}$ function if there exist languages $A, B \in \mathcal{C}$ and a polynomially bounded function p such that

$$f(x) = \big| \big\{ y \in \Sigma^p : \langle x, y \rangle \big\}$$

for all $x \in \Sigma^*$.

 $\in A\}\big|-\big|\big\{y\in\Sigma^p\,:\,\langle x,y\rangle\in B\big\}\big|$

First result

Existence of a polynomial length string. Use the matrix bound of Tool 1 + probabilistic method.

Definition 12. The complexity class $\exists \cdot PP$ contains all promise problems $A = (A_{yes}, A_{no})$ for which there exists a language $B \in PP$ and a polynomially bounded function p such that these two implications hold:

$$x \in A_{\text{yes}} \Rightarrow \left\{ y \in \Sigma^p : \langle x, y \rangle \in B \right\} \neq \emptyset,$$

 $x \in A_{\text{no}} \Rightarrow \left\{ y \in \Sigma^p : \langle x, y \rangle \in B \right\} = \emptyset.$

Existence of a PP language. Use Tool 2.

Setting things up...

Let Alice send an optimal classical probability distribution "p" over

 $y \in \Sigma^n$.

Define

Probability that Alice wins when Bob

Hurdle: "p" may not have a polynomial length description

Observation: Alice is restricted to a classical strategy!

$$S_{x,y} = (\langle y | \otimes \mathbb{1}_{\mathcal{B}}) Q_x^*(|1\rangle \langle 1|) (|y\rangle \otimes \mathbb{1}_{\mathcal{B}})$$

plays optimally:
$$\lambda_{\min}\left(\sum_{y \in \Sigma^n} p(y)S_{x,y}\right)$$

Take N = 72(m + 2), where m is the number of Bob's qubits. Consider an *N*-tuple of strings $\langle y_1, y_2, ..., y_N \rangle$ for $y_i \in \Sigma^n$.

Define a distribution "q" as follows:

(Intuition: choose an index uniformly at random!)

By the matrix tail bound, there exists a "q" that is a good approximation to "p"!

Brief proof idea

$$q(y) = \frac{|\{j \in \{1, \dots, N\} : y = y_j\}|}{N}$$

"q" has a polynomial length description!

Probability Alice wins when she plays

Use second tool to get the PP language B!

Combine the two (polynomial description + PP language), and we have our proof

$$\lambda_{\min}\left(\frac{S_{x,y_1}+\cdots+S_{x,y_N}}{N}\right)$$

Lemma 22. Let $\{Q_x : x \in \Sigma^*\}$ be a polynomial-time generated family of quantum circuits, where each circuit Q_x takes as input a k-qubit register Y and an m-qubit register B, for polynomially bounded functions k and m, and outputs a single qubit. For each $x \in \Sigma^*$ and $y \in \Sigma^k$, define an operator

$$S_{x,y} = (\langle y | \otimes \mathbb{1}_{\mathcal{B}}) Q_x^*(|1\rangle \langle 1|) (|y\rangle \otimes \mathbb{1}_{\mathcal{B}}).$$

For every polynomially bounded function N, there exists a language $B \in PP$ for which the following implications are true for all $x \in \Sigma^*$ and $y_1, \ldots, y_N \in \Sigma^k$:

$$\lambda_{min}\left(\frac{S_{x,y_1} + \dots + S_{x,y_N}}{N}\right) \ge \frac{2}{3} \quad \Rightarrow \quad (x,y_1 \cdots y_N) \in B,$$
$$\lambda_{min}\left(\frac{S_{x,y_1} + \dots + S_{x,y_N}}{N}\right) \le \frac{1}{3} \quad \Rightarrow \quad (x,y_1 \cdots y_N) \notin B.$$

31

- 11
- 11
- 11
- 11
- 11
- 1
_

Second result:

We will prove: $MQRG(1) \subseteq QMA \cdot PP$

We will define this channel. Justification uses the matrix tail bound from before.

Setting things up

ρ		Qx	
	R_x		

MQRG(1)

Define:

Assuming Bob plays optimally, the language B can be found the same way as before, by applying the "second" tool.

 $K_x = |x\rangle \langle x| \otimes P_x^{\otimes N}$

Proof outline

It now suffices to prove:

that

Pr(

Slightly more involved because there may be entanglement across N registers. Proved using a conditional variant of Hoeffding's inequality.

Take:
$$\xi = \rho^{\otimes N}$$

Can prove using the matrix tail bound, similar to before.

Completeness. If it is the case that $x \in A_{yes}$, then there must exist a state $\xi \in D(\mathcal{A}^{\otimes N})$ such

$$(K_x(\xi)\in B)\geq \frac{2}{3}$$

Soundness. If it is the case that $x \in A_{no}$, then for every state $\xi \in D(\mathcal{A}^{\otimes N})$ it must be that

$$\Pr(K_x(\xi)\in B)\leq \frac{1}{3}.$$

Conclusion

Proved two containments.

Future work:

- 1.
- 2. Facts about QRG(1) where both provers are classical.

3. Is QRG(1) contained somewhere in the counting hierarchy?

$CQRG(1) \subseteq \exists \cdot PP$

$MQRG(1) \subseteq P \cdot PP$

Oracle separations. Is there an oracle separating PP/AWPP from QRG(1)?

Thank you!

