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Let us start with QMA.....

Referee

Alice (the yes prover)



QRG(1) is a generalization

Referee

Bob (the no prover)



Proper definitions

That of a “referee”....

Definition 8. A referee is a polynomial-time generated family

R iR, vew)

of quantum circuits which has the following features, for each x € ¥*:
w(Ry) = max min (1|Ry(p®0)|[1).
1. The inputs to the circuit R, can be divided into two registers: an n-qubit register A peD(A) ceD(B)

and an m-qubit register B, where n and m are polynomially bounded functions.

2. The output of the circuit Ry is a single qubit, which is measured in the standard basis
immediately after running the circuit.

That of QRG(1)....

Definition 9. A promise problem A = (Ayes, Ano) is contained in the complexity class
QRG(1),,p if there exists a referee R = {Ry : x € £*} such that the following properties
are satisfied:

1. For every string x € Ayes, it is the case that w(Ry) > a.
2. For every string x € Ay, it is the case that w(Ry) < B.

We also define QRG(].) — QRG(1)2/3,1/3.




What do we know about QRG(1)?

Trivial facts:
1. Contains QMA (just neglect the no proof).
2. Contains co-QMA (just neglect the yes proof).

3. Error reduction by parallel repetition.

Non-trivial facts:

1. Contained in PSPACE (proved by Rahul Jain and John Watrous, 2009).

o QRG(1) = PR¢M)  (folklore result, elucidated in thesis).



Contributions of this thesis

Two new classes:




Hasse diagram showing the inclusions



What are those funny classes?
- PP

Definition 12. The complexity class 3 - PP contains all promise problems A = (Ayes, Ano)
for which there exists a language B € PP and a polynomially bounded function p such

that these two implications hold:
# 2,

xeAyeS:{yeZP : (x,y)EB}
xeAnO:>{yeZP : (x,y)eB}:z.

P - PP

Definition 13. The complexity class P - PP contains all promise problems A = (Ayes, Ano)
for which there exists a language B € PP and a polynomially bounded function p such

that these two implications hold:
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X € Apo = ryeZP : (x,y)EB}



First tool....

A Chernoff-type bound, but for matrices! Proved by Tropp, 2011.

Corollary 20. Let d and N be positive integers, let n,e € [0,1| with n > ¢ be real numbers,
and let X1, ..., XN be independent and identically distributed operator-valued random variables

having the following properties:

1. Each X takes d X d positive semidefinite operator values satisfying X; < 1.
2. The minimum eigenvalue of the expected operator E( X} ) satisfies Amin(E(X%)) > 7.

It is the case that

Pr()»min(xl X N X XN) <1 — 8) < dexp(—ZNez).



Second tool.....

Brief description: gives us a PP language!

Lemma 22. Let {Qx : x € X*} be a polynomial-time generated family of quantum circuits,
where each circuit Q takes as input a k-qubit register Y and an m-qubit register B, for polynomi-
ally bounded functions k and m, and outputs a single qubit. For each x € X* and y € ¥, define
an operator

Sxy = (¥ ®13)Q:(11)(1]) (ly) ©1
For every polynomially bounded function N, there exists a languag or which the follow-

ing implications are true for all x € Z* and vy, ...,yn € ZF:

Sxy, + -+ S, 2
/\min( * N xyN) 25 =4 (x,}h"']/N)GBr
Syt + Sx, 1
/\min( ] N xyN) Sg = (xlyl"'yN)¢B°
31

Idea of the proof: similar to Marriott Watrous but without in-place error amplification



More tools.....

Px P XB [

Definition 24. For a given complexity class C, the complexity class QMA - C contains all
promise problems A = (Ayes, Ano) for which there exists a polynomial-time generated
family of quantum circuits {P, : x € L*}, where each P, takes n = n(|x|) input qubits
and outputs k = k(|x|) qubits, along with a language B € C, such that the following
implications hold.

1. If x € Ayes, then there exists a density operator p on n qubits for which



Fact: OMA - C is containedin P - C, when C is P or PP

Definition 2. Let € be any complexity class of languages over the alphabet 2. A function
f:X2* = Zis a Gap - C function if there exist languages A, B € C and a polynomially
bounded function p such that

fx)={yeZf: (xy) € A} - |[{y € Z7 : (x,y) € B}

for all x € X%,



First result

Definition 12. The complexity class 3 - PP contains all promise problems A = (Ayes, Ano)
for which there exists a language\B € PP and a polynomially bounded function p such

that these two implications hold:

xEAyeS=>. (x,Y)

xEAnO=>{yEZP: X,Y) € }

[
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CQRG(1) C 4- PP

Existence of a polynomial length string. Existence of a PP language.
Use the matrix bound of Tool 1 + probabilistic method. Use Tool 2.




Setting things up...

Observation: Alice is restricted to a classical strategy!

Let Alice send an optimal classical probabillity
A = distribution “p” over
Qe
B — y € 2.
Re Define Sy = ((y|®15)Q5(11)(1]) (|y) ® 1)

Probability that Alice wins when Bob plays optimally: /\min( Z P(}/)Sx,y)
ye2n

Hurdle: “p” may not have a polynomial length

description



Brief proof idea

Take N = 72(m + 2), where m is the number of Bob’s qubits.

Consider an N-tuple of strings (y;, y,, ..., yy) fory. € 2.

_{ie{r... N} sy =y}
N

Define a distribution “g” as follows: q(y)

(Intuition: choose an index uniformly at random!)

By the matrix tail bound, there exists a “q” that is a good approximation to “p”!

“q” has a polynomial length description!



Probability Alice wins when she plays “q™: Amin

Lemma 22. Let {Qx : x € X*} be a polynomial-time generated family of quantum circuits,
where each circuit Qy takes as input a k-qubit register Y and an m-qubit register B, for polynomi-
ally bounded functions k and m, and outputs a single qubit. For each x € ¥* and y € T¥, define
an operator

Sxy = ((y|®15)Q:(I11)(1)(ly) ®1
Use Second tOOI tO get the PP Iang uage B! For every polynomially bounded function N, there existsalanguag@or which the follow-

ing implications are true for all x € 2* and yy,...,yn € ZX:

Swyy -+ Sx, 2
/\min( h N xyN)Zg = (xy1---yn) €B,
Sxy++ S, 1
/\mln( X Y1 N xyN) S g = (x,yl...yN) gB_
31

Gombinethe o lpolynomisl descripton PP angusge),an e ave our oot




Second result: Morca)cp.pr

We will prove:

MQRG(1) € QMA - PP
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We will define this channel.
Justification uses the matrix tail bound
from before.

Existence of PP language B.
Argued for same as before, using the “second” tool.



Setting things up

Qx

i
~
=

XB

Assuming Bob plays optimally, the language B can be found the same way
as before, by applying the “second” tool.




Proof outline

It now suffices to prove:

Completeness. If it is the case that x € Ayes, then there must exist a state § € D(A®Y) such
that

IV

Pr(Ky(¢) € B) > =

Soundness. If it is the case that x € Ap,, then for every state & € D(A®Y) it must be that

Pr(K«(¢) € B)

VA
W |

Slightly more involved because there may be entanglement across N registers.
Proved using a conditional variant of Hoeffding’s inequality.




Conclusion CQRG(1) C3-PP

MQRG(1) C P-PP

Future work:

1. Oracle separations. Is there an oracle separating PP/AWPP from QRG(1)?

2. Facts about QRG(1) where both provers are classical.

3. Is QRG(1) contained somewhere in the counting hierarchy?
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Thank you!




